TWOJA PRZEGLĄDARKA JEST NIEAKTUALNA.
Wykryliśmy, że używasz nieaktualnej przeglądarki, przez co nasz serwis może dla Ciebie działać niepoprawnie. Zalecamy aktualizację lub przejście na inną przeglądarkę.
Human-artificial intelligence interactions: Redefining knowledge creation and sharing for sustainable human resource management
Grant no.: 2024/55/D/HS4/02631
Funding agency: NATIONAL SCIENCE CENTRE
Funding scheme: Sonata 20
Funding period: September 2024-2027
Budget: 544 120 PLN
Title in Polish: Interakcje człowieka ze sztuczną inteligencją: Redefinicja tworzenia i udostępniania wiedzy na rzecz zrównoważonego zarządzania zasobami ludzkimi
Research team:
Principal Investigator (Kierownik):
Investigators (Wykonawcy):
Collaborators (Współpracownicy):
– Ph.D. / M.Sc. / B.Sc. student
Aims and scope:
This study investigates how organizations can effectively adopt artificial intelligence (AI) while aligning these advancements with sustainable and human-centric practices. The primary aim is to understand, develop, and redefine the mechanisms through which Sustainable Human Resource Management (Sus-HRM) enables the realignment of human–AI collaboration .The research is structured to achieve the following objectives:
Methodology of this project
This study employs a mixed-methods approach, beginning with a systematic literature . The review will identify critical research gaps using Scopus, Web of Science, ProQuest, and other databases.Following the review, qualitative research will focus on inductive theorizing through in-depth interviews conducted within knowledge-intensive organizations. Semi-structured interviews will involve participants from five countries: India, Italy, Poland, the United Kingdom, and Malaysia.The study's quantitative phase will develop and test both measurement and structural models. Advanced analytical approaches, including Structural Equation Modeling (SEM) using SPSS, AMOS, and SmartPLS, will examine complex relationships. Complementary techniques such as Necessary Condition Analysis (NCA), Finite Mixture Modeling (FIMIX-PLS), and Multi-Group Analysis (MGA) will address the multifaceted nature of human-AI collaboration. Moderators and mediators identified through the literature and qualitative findings will be proposed and tested to understand their influence on key constructs.
Tasks:
Systematic Review / Conceptual paper Qualitative Research Empirical Research
Expected impact:
The project is designed and planned to deliver:
Publications:
Peer-reviewed articles in JCR-listed journals
2024 (0+), 2023 (1)
…..
Peer-reviewed articles in non JCR-listed journals
…
Book chapters
…
Conference papers/posters
…
Forthcoming publications, submitted papers and work in progress
Critically Advancing HRM Theory: AI, Sustainability, Common Good
Nasze strony internetowe i oparte na nich usługi używają informacji zapisanych w plikach cookies. Korzystając z serwisu wyrażasz zgodę na używanie plików cookies zgodnie z aktualnymi ustawieniami przeglądarki, które możesz zmienić w dowolnej chwili. Ochrona danych osobowych »